
Collaborative Circuit Designs using the CRAFT Repository

Adam Brinckmana, Ewa Deelmanb, Sandeep Guptac, Jarek Nabrzyskia, Soowang Parkc,
Rafael Ferreira da Silvab, Ian J. Taylora,d, Karan Vahib

aUniversity of Notre Dame, Center for Research Computing, Notre Dame, IN 46556, US
bInformation Sciences Institute, University of Southern California, Marina del Rey, CA, USA

cDepartment of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
dCardiff University, School of Computer Science & Informatics, 5 The Parade, Cardiff CF24 3AA, UK

Abstract

This paper provides an overview of the CRAFT repository, which exposes a collaborative
gateway enabling circuit designers to share methods, documentation and intellectual prop-
erty. The main goal for the repository’s development is to ensure that future designs for
custom integrated circuits need not be reinvented for each design and fabrication cycle. This
paper presents the architecture, design, and implementation of the collaborative repository,
which capitalizes on the recent advances in production quality open-source collaborative
framework, which are interfaced using a lightweight Javascript front-end to satisfy the re-
quirements of the DARPA’s CRAFT program. The repository has been developed as an
EmberJS application (front-end), that interacts with an instance of the Open Science Frame-
work (OSF). This paper contextualizes the framework from the viewpoint of circuit designers
and outlines the advantages of the tools and visualizations offered by the repository, in terms
of increasing the efficiency of designers’ tasks. To this end, we also provide a description
of two specific tools that have been exposed using the repository, which build on JSON
schemas and allow users to develop and visualize the circuit design flow diagrams and the
intellectual property they can reuse to accelerate their design process.

Keywords: Collaborative Environments; Design Flows; Chip Design

1. Introduction

ASIC designers typically have years of formal training and experience, and hence a signif-
icant understanding of the prevailing design tools, the formats/languages used to describe
various artifacts created during the design process, typical sequences in which the tools
are used (called design flows) to achieve typical design requirements, and of available in-
tellectual properties (IP, also called IP cores), which they use to reduce design time and

Email addresses: abrinckm@nd.edu (Adam Brinckman), deelman@usc.edu (Ewa Deelman),
sandeep@usc.edu (Sandeep Gupta), naber@nd.edu (Jarek Nabrzyski), soowangp@usc.edu (Soowang
Park), rafsilva@isi.edu (Rafael Ferreira da Silva), ian.j.taylor@nd.edu (Ian J. Taylor),
vahi@isi.edu (Karan Vahi)

Preprint submitted to Future Generation Computer Systems February 2, 2018

costs. ASIC designers’ responsibility encompasses understanding the specifications for an
Application Specific Integrated Circuit (ASIC) under design, including the functionality the
ASIC must implement and constraints on values of its key parameters, such as speed and
power consumption; and the use of available tools, IP, and design flows to carry out design,
analysis, and simulations to obtain ASIC designs that meet the desired specification, while
minimizing design costs and time to market.

The Circuit Realization at Faster Timescales (CRAFT) program by the Defense Ad-
vanced Research Projects Agency (DARPA) [1] aims at reducing the design cycle time to
market (referred to as timescale in the program) for creating custom ASIC integrated cir-
cuits. Today, ASIC designs can take more than two years, require a large team of engineers,
and incur costs well in excess of $100 million. Such timescales and economics are not prac-
tical and therefore Department of Defense (DoD) engineers tend to use readily available
inexpensive general-purpose chips (field-programmable gate arrays (FPGAs) and general
purpose processors(GPPs)) and implement the specialized operations using reconfiguration
(of FPGAs) or software (on GPPs). The resulting chips require more power, which is not
ideal for hand-held devices that are deployed in the battlefield or for use in unmanned aerial
vehicles.

CRAFT’s program goal is to reduce the timescale for designing power-efficient high
performance ASICS for military applications to months. (In this paper, we use chips and
ASICS interchangeably.) In order to facilitate this goal, the CRAFT repository also aims
to provide innovative tools so that methods for fast design, documentation, and intellectual
property can be re-purposed, rather than re-invented, with each design and fabrication cycle.

Our team has been working on designing and building the CRAFT repository [2], with
the aim of it being a collaborative gateway for circuit designers to be able to work on chip
designs together and share their methods, tools, and designs. For developing this repository,
we have taken a hybrid approach by integrating a CRAFT-specific Web front-end, written
in EmberJS [3], with the preexisting Open Science Framework (OSF) [4]. We make use of
the OSF’s REST API for the integration. We have further reused some of the Web graphical
interfaces by virtual co-locating of an OSF server instance alongside our customized CRAFT
Web application. This approach involved some effort in the minor customization of the OSF
instance e.g., LOGO, titles, etc., but also allowed us to include several pieces of functionality
without modification (e.g., file browser and visualizing, adding contributors, a WIKI, and so
on). The CRAFT application implementation was confined to CRAFT-specific additions to
support the collaborative tools for chip design and the remaining parts of the OSF seamlessly
work together in an extremely interactive on-line experience.

This paper describes the architecture, design, and implementation of the CRAFT repos-
itory and it’s collaborative tools. This work is far more comprehensive than our previous
publication [5]. Here, we focus far more towards the user and to enable circuit design reuse.
We also extend this previous work by describing the new CRAFT specific extensions to this
repository that allow a user to specify, edit and visualize their design flows and their descrip-
tion of their intellectual property surrounding their design. Therefore, we added two new
sections in Section 6 that focuses on the Craft tools to enable collaborative circuit design.
Such tools enhance the overall chip design process by facilitating re-use of circuit modules

2

and rapid adoption of new design flows across CRAFT program participants.
The rest of the paper is organized as follows. Section 2 provides a typical workflow

for a circuit designer and how their scientific methods can be improved through the use
of more advanced tools. Section 3 discusses the requirements for the CRAFT repository
and extracts the common primitives and constructs needed for implementation. Section 4
discusses the architecture and design of the craft repository and Section 5 discusses the core
implementation of the repository. Section 6 describes the collaborative tools, which allow
a Craft user to enter their design flows and IP. Section 7 discusses future directions, and
Section 8 concludes the paper.

2. CRAFT Impact for the Collaboration of Circuit Designers

ASIC designers must have a deep understanding of available tools, formats/languages
used to represent the artifacts and information created during design, design flows, and IP.
Traditionally, all this information is captured in comprehensive manuals and supported by
training material. Traditional formats and comprehensiveness of these manuals necessitates
years of formal training and experience for new entrants. However, in normal circumstances
this works reasonably well, since a designer must face the difficult learning curve only once,
when they first enter the ASIC design field. This is due to the fact that they can subsequently
update their knowledge base incrementally, since the tools, languages, flows, and IP change
slowly.

In contrast, the DARPA CRAFT program poses major new challenges due to two reasons.
First, CRAFT plans to develop a wide range of radically new tools, languages, flows, and
IP, necessitating significant learning even for experienced ASIC designers. Second, one key
goal of this program is to provide a path for DoD designers with little prior ASIC design
experience to design ASICs using the new methods and tools developed by the CRAFT
performers. Simply, this necessitates us to develop new ways to represent the knowledge,
especially about design flows and IP, in such a way that an engineer new to ASIC design
can learn and start using these quickly. Special challenge is posed by the design flows, since
these are typically described using scripts which are difficult to understand, must be adapted
to each design team’s specific objectives and computing environment, and must be used in
iterative ways that currently rely completely on designer’s experience.

We are creating our repository to provide the support the achievement of the above objec-
tives of CRAFT. Specifically, our repository provides support for communities of designers,
includes new ways to represent knowledge about tools and languages as well as completely
new ways to represent and adapt design flows, and a new approach for submission, search,
and use of IP.

Leading vendors of ASIC design tools provide frameworks that consolidate the key steps
of ASIC design and verification, by providing lists of these steps, managing the status of
each step, and displaying key results from each step. The Lynx [6] system from Synopsys is
an example of such a framework.

In contrast to these, our project addresses the unique challenge created by the ambition
of the DARPA CRAFT program. On one hand, CRAFT program is supporting the creation

3

of several completely new tools and languages to be added to existing commercial repertoire.
On the other hand, starting in its Phase 2, CRAFT program is planning to bring DoD design
teams, some with little prior ASIC design experience. Our repository’s goal is to provide
an environment where design teams with little prior experience are able to learn a vast
array of new tools and languages and to provide support that will enable them to harness
new and old tools to design ASICs in highly reduced timescales. In the first phase of the
CRAFT program we have focused on the development of tools to capture the development
and description of design flows and IP cores (presented in this paper). In the second phase
(recently started), we aim to develop tools to enable the discovery of these contributions
as well as to facilitate the understand and execution of the process to use the IP cores or
execute the flows.

3. Craft Requirements

To derive the key characteristics of the repository, we began by analyzing the goals of the
CRAFT program. First and foremost, CRAFT requires the development of radically new
chip design approaches that will dramatically reduce the time required for the first successful
tape-out1 for ASIC designs. The community of researchers and industry experts working to
address this challenge will develop completely new tools, new types of IP libraries, and new
design flows. Second, the program requires CRAFT researchers to transfer immediately all
their new tools, IP libraries, and desing flows to a few selected DoD ASIC design teams, and
requires these teams to use such tools to design ASICs. Third, the program requires rapid
refinement and adoption of the new tools, libraries of module designs, and design flows by
the wider community of DoD ASIC design teams.

The CRAFT repository therefore must expose many of these tools to help the CRAFT
community organize information and to allow the different teams to communicate efficiently
with each other. At the same time, the various teams need to have control over their
content, hence the repository’s architecture must be sufficiently flexible to provide designers
the ability create different permissions for different projects and topics. The following five
sections discuss the underlying requirements and the high level concepts we use to attain
CRAFT goals.

3.1. A Collaborative Space For Chip Designs

The CRAFT project centers collaboration around a design flow. Therefore, the repos-
itory requires a way to encapsulate the tools within some kind of collaborative space. To
meet this requirement, we decided to organize the repository using the concept of a project,
in a way very similar to other on-line tools, such as Bitbucket [7] and GitHub [8]. Each
project should have a project overview page, which provides access to the ensemble of fea-
tures of the project, as well as an overview of the components, files, tags, history, comments,
and other components (e.g., wikis associated with the project). Participants should also be

1In the circuit design context, tape-out is the final result (or the resolution of the cycle) of the design
process for integrated circuits (ASICs).

4

able to participate in discussions by leaving comments within a project, effectively creating
a project-wide chat. Further, notifications should be enabled for any project, allowing users
to be notified via email when a new comment is added to a project. A user can also choose
to receive email notifications when someone replies to their comment, similar to how they
would do on Facebook.

Each project should be able to provide documentation (e.g., a wiki), describe itself (tags),
and allow files to be uploaded and browsed. Sub-projects should be allowed and should be
distinct, encapsulated parts of a project and have their own contributor lists and permissions.
For example, the user should be able to create a data component that remains private even
when other parts of the project are made open to other collaborators, and list contributors
that were vital for data collection but are not involved in other parts of the project. Thus,
projects have a hierarchical collaborative space.

Each project therefore should provide a container to allow a user to organize files and
content into meaningful groups like catalog of design flows, standard reference flows, pro-
posed flows, datasets, code, circuit modules and IP modules designed, or other research
contributions. Each project should also have a unique, persistent URL, meaning that it
can be referenced or linked to individually. Every action/event should be automatically
documented with date-time stamps, and the log presented on the project dashboard. Addi-
tionally, a project should be capable of being completely open or private.

3.2. Authentication

Users should authenticate via a secure central authentication service (CAS). The CAS
protocol involves at least three parties: (1) a client web browser, (2) the web application
requesting authentication, and (3) the CAS server. It may also involve a back-end service,
such as a database server, that does not have its own HTTP interface but communicates
with a web application. When the client visits an application desiring to authenticate
to it, the application redirects it to CAS. CAS validates the client’s authenticity, usually
by checking a username and password against a database (such as Kerberos, LDAP, or
Active Directory). If the authentication succeeds, CAS returns the client to the application,
passing along a security ticket. The application then validates the ticket by contacting CAS
over a secure connection and providing its own service identifier and the ticket. CAS then
gives the application trusted information about whether a particular user has successfully
authenticated. CAS allows multi-tier authentication via proxy address. A cooperating back-
end service, like a database or mail server, can participate in CAS, validating the authenticity
of users via information it receives from web applications.

3.3. Project Permissions, Communication, and Privacy

Each project should have a project leader (project administrator, e.g., the PI could
be a project administrator), who can manage that particular project and its sub-projects.
The project administrator should be able to invite collaborators to their project and assign
them certain privileges. Additional roles include: (1) read privileges, allow contributors to
see the contents of the project or component; and (2) read and write, which allow the
contributor to see the contents of the project, upload and delete files, create, and edit new

5

projects. Administrators encompass read and write privileges, as well as the ability to
add or delete contributors, controlling permissions, and controlling the overall settings of
the project, or even deleting the project.

All projects should be private by default. However, a project administrator can choose
to make a project publicly available. However, projects that are public can still contains
sub-projects with their own privacy settings, i.e., making a project public does not make all
of its sub-projects public. Users may want to provide more limited access to external users
for a variety of circumstances. For example, editors or reviewers might get read-only access
to a private project during the review process.

3.4. Version Control

The repository should support version control as part of its services. Project members
can keep things up to date by uploading new versions of documents to the repository and
have the repository keep track of older versions of those documents.

We also plan to support “releases”, which create a frozen, time-stamped version of a
project that cannot be edited or deleted. The release will have its own unique, persistent
URL that is always linked back to the frozen project. The meta-data should be permanently
stored with a registration.

3.5. Visualizing and Editing Design Flows

The design flows should be captured using a machine processable format, which is ca-
pable of being visualized by Web-based tools. From our initial requirements gathering, our
users have indicated that a graph view and a table view are the two initial visualization
tools we should provide for the design flows. For editing the flows, initially these will be
input manually but in the second phase of the project, we target the support of editable
components via the table or graph viewers.

4. Architecture and Design

Our architectural design approach in developing a repository consistent with the require-
ments of the CRAFT program, was guided by the principles of optimizing development and
enabling sustainability. We identified four candidate approaches that would enable us to
converge to an efficient system: 1) architecting and implementing the system from scratch;
(2) customizing an existing system to meet the needs; (3) creating a new dashboard to an
existing system using a REST API; or (4) creating a dashboard for CRAFT-specific fea-
tures to an existing system using a REST API, and leveraging existing tools using a hybrid
architecture.

The first option is essentially a straight forward engineering task, considering the fact that
the requirements are well defined. It provides us certain advantages such as no other systems
to learn and integrate with. However, the development manpower available to us (1.5 full-
time developers) and the timescale of 7 months, from project requirements gathering to a first
production release of the repository made it infeasible. Another drawback is that a subset of
the features already exist on other websites; e.g., Github and Bitbucket. They already have

6

many of the project-oriented features implemented, amongst a number of others. That in
itself, made this approach a poor case of reinventing the wheel. Lastly, sustainability is not
guaranteed and would have required on-going additional effort to maintain the code base.

Given the above considerations we then decided to investigate existing systems that may
satisfy some or all of the CRAFT requirements. We identified two candidate systems that
were then investigated in depth. We discuss our findings and analysis below.

The Open Science Framework (OSF) [9, 4] is an open source software project that fa-
cilitates open collaboration in science research. It focuses primarily on the reproducibility
of scientific research. OSF has a notion of a project (called a node or component in OSF),
that allows users to invite other people to collaborate. Administrator of a project can as-
sign various privileges to users such as administrative, read and write. The system natively
supports file versioning, allowing users to upload new versions of a file and keep the same
name. Users can see all the versions of the files. At the project level OSF supports forking
and registration of a project. Registration of a project results in an immutable release that
is good for sharing working functionality with the larger community. For importing and
exporting data into the repository, OSF additionally interfaces with several popular cloud-
based storage systems, e.g., Dropbox [10], Google Drive [11], and Box [12]. Projects in OSF
have a full WIKI capability for integrating documentation, a facility for adding comments
and tools for visualizing different types of files. OSF has recently evolved into a more general
framework for enabling project-based functionality. It provides a JSON-API [13] compat-
ible REST interface for all of the functionality. The API is provided using the Django
Rest Framework [14]. OSF also provides an EmberJS [3] toolkit that allows third party
implementations to reuse the models of the OSF API from a Javascript application.

From a sustainability point of view, both systems offer good support. HUBzero pro-
vides the HUBzero Foundation, which is a community-based, non-profit organization that
promotes the use of HUBzero and ensures ongoing sustainability of the core software. The
OSF has various methods to allow people to contribute to the longer term sustainability of
the software, including donations using Crowdrise or other forms of payment. The OSF has
also set aside a fund to continue the support for the framework.

HUBzero [15] is another existing system that addresses most of our requirements. It is
an open source software platform for building websites that support scientific activities. The
Hub excels in providing interactive graphical simulation tools. For example, you can zoom
in on a graph, rotate a molecule, probe isosurfaces of a 3D volume interactively. The Hub
also provides a collaboration space, where users can come together and share information.
Fine grained controls exist for managing group information, such as allowing the creator of
a group to accept or reject members. Projects can be made private limiting access only to
registered members of the group. The Hub has a notion of “topic” pages, that are similar
to the Google “knol” model for knowledge articles.

Both HUBZero and OSF support most of the features that CRAFT requires. One of
our main motivations with the development of this repository, was to keep the CRAFT web
dashboard separate and decoupled from the existing systems code bases. Although HubZero
has good interfaces in PHP available, it lacks a comprehensive Web API that can be used
to separate the HUBzero instance from the CRAFT web dashboard. On the other hand,

7

Figure 1: Overview of the CRAFT repository architecture.

OSF enables us to cleanly separate CRAFT specific development from the base system by
use of their provided REST API. This is a big advantage, and allows for easier upgrades to
an existing OSF installation, as new releases are released. OSF provides additional useful
capabilities such as chat and WIKI surrounding project entities, versioning of files and even
projects (through registration and forking). We therefore decided to capitalize on the recent
advances of OSF to base the development of the CRAFT repository.

Initially, we decided to approach the development of the CRAFT repository using ap-
proach 3, whereby we attempted to recreate all the functionality required by CRAFT by
developing an EmberJS application [2] using the OSF REST API. However, during our ini-
tial prototyping we realized that certain existing graphical features of OSF related to core
project management, were themselves compelling to use without recreating them in our
EmberJS application. The CRAFT repository uses all user, project, and file management
features provided by OSF, as well as Wiki and support to add-on tools (e.g., Google Drive,
Dropbox, etc.) capabilities. Further, because of DARPA requirements and privacy concerns
we were unable to use the hosted OSF instance, and were required to install our own in-
stance at a server in Notre Dame. The resulting hybrid architecture is illustrated below in
Figure 1.

The frontend is hosted across two symbiotic servers: an EmberJS CRAFT application
that has CRAFT specific capabilities such as support for chip design flows and IP cores;

8

and a marginally customized OSF instance [16] that we use to provide the core Project
and membership capabilities. In order, to provide a consistent look and feel, we lightly
customized our instance of OSF to ensure that, (a) OSF LOGO is replaced with CRAFT
logo, (b) OSF name is replaced with CRAFT, and (c) menus were modified to provide link
to our CRAFT EmberJS application and remove links referring to OSF functionality not
used in the CRAFT repository. We have captured all our modifications in a standalone
script to ensure easy upgrades of the OSF instance. We envision, that we will regularly
update our OSF instance to take advantage of bug fixes and rollout of new features in the
OSF framework.

We conceptualized the CRAFT architecture as two servers tying together in a seamless
repository. Users see it as a single application with the same look and feel throughout the
repository. This was achieved by copying the core OSF look and feel to our CRAFT EmberJS
application and updating the application menu’s to include links to functionalities on both
the servers. OSF’s bootstrap-based development integration with Semantic UI[17] compo-
nents used in CRAFT application presented a major integration challenge. We summarize
below, how a user interacts with the repository

• User logs in via the CRAFT application;

• The CRAFT application redirects to the Oauth CAS server to get a user token for
authentication. This token is cached in the browser to satisfy both the CRAFT appli-
cation and the OSF instance;

• The CRAFT application shows the user a customized dashboard composed of a set/collection
of CRAFT communication channels and flows;

• When a user clicks on a project, s/he enters the CRAFT project main page;

• The CRAFT application implements two custom pages: the overview page for describ-
ing the flow or the IP cores and the Craft page, which integrates the view and editing
capabilities for the design flow or the IP core; and

• The two EmberJS pages are included on a project menu along with the remaining
links of the OSF instance. This creates a unified experience across both servers.

Our hybrid approach to architecture has allowed us to use in the repository various
project-oriented features in OSF such as exposing files, revisions and releases, comments,
tag, history and other components such as WIKI’s. We are able to use the OSF OAuth
mechanism for Centralized Authentication (CAS) without any modifications. Our devel-
opment effort has mainly focused on CRAFT specific capabilities such as representing and
editing chip design flows and IP cores.

9

Figure 2: High level overview of the process for identifying the template used for a design flow.

4.1. CRAFT Design Flow Specification

Each CRAFT performer team is developing a user-oriented version of their new design
flows that can be used by DoD designers. As such, their representations are specific to
their individual design approaches. The CRAFT repository team has been tasked to be the
bridge between the various flows and the target DoD design community. A major deliver-
able for the CRAFT repository is to capture, document, store, and visualize such flows in
a systematic and common methodology. The repository flow description has to be flexible,
and generic to describe the specificities of the various flows. Our initial interactions with
the various teams indicated that no common design flow representation standards exits in
the chip design community. Each company has their own methodology of describing their
flow, very often as a text manual. In order to come up with a standard representation for
representing the design flows, we took an iterative approach illustrated in Figure 2. In the
first step, we conducted several requirements gathering meetings (in-person, teleconferences,
email exchanges, etc.) with the performer teams to create a high-level view of their design
flows (no flow specific information required at this point, e.g., options and controls). The
high level views were captured described in a visual fashion using OmniGraffle [18], in a
manner similar to how scientific workflows are described. The visual representation cap-
tured the steps that are involved in the flow and the input and output files required for each
step. The second step involved expanding this information into a detailed description that
included information about options, flow controls and data. This detailed information was
captured in a spreadsheet template, that was then filled up by the various CRAFT perform-
ers. Finally, we developed a common JSON format to capture all this information. JSON
was used, especially because of its ease of use with the various web based javascript visual-

10

Figure 3: CRAFT login screen: authentication is performed via Oauth from OSF CAS.

ization libraries. The implementation of design flows in the repository is further described
in section 6.1

5. Implementation

The CRAFT repository exposes many tools to help the CRAFT community organize
information and to allow the different teams to communicate efficiently with each other. In
order to develop a robust and efficient system with state-of-the-art technology, the devel-
opment of the CRAFT repository is fully based on open source software. The underlying
project-based implementation is provided through the OSF REST API. The Web dashboard
is implemented with EmberJS and uses the Ember OSF toolkit [19] to model the REST API.
Since we capitalize on OSF capabilities (provided by a private local OSF instance) for most
of the GUIs and tooling (e.g., file management, etc.), the implementation of the CRAFT
EmberJS application encompasses five areas of development: (1) authentication to the OSF
CAS; (2) the main dashboard page; (3) the project overview Page; (4) the project publish-
ing/registration mechanism; and (5) the discussion forum.

In addition to these specific functional elements, the EmberJS application also imple-
ments the more general look-and-feel features (e.g., menus, CSS, etc) for the application.

5.1. Authentication and Registration

A customized login screen was created for the CRAFT application, which allows a user
to login or to register with the OSF, as shown in Figure 3. The registration method simply
redirects the user to our private OSF instance for registration within the server. When the
user logs in, authentication in the application is achieved using the Ember OSF plug in that
runs the Oauth flow to the OSF CAS, which asks permission for the EmberJS application to

11

Figure 4: CRAFT main dashboard screen.

access data on the OSF (as also shown in Figure 3). Upon success, the application redirects
the user to the redirect URL specified in this flow. The redirect URL is currently defined to
be the dashboard page of the EmberJS application, i.e., sends the user to the CRAFT main
dashboard.

5.2. CRAFT Dashboard

The CRAFT repository is organized into private and public projects. Private projects are
projects that restrict access/management only to the members of the projects, while public
projects provide view access to everyone. In the main dashboard, we organized these projects
into two different category views, which explicits the nature of such projects (a screen-shot
of the private project part of this dashboard is shown in Figure 4). The dashboard uses the
Ember OSF pagination filtering mechanism to filter the projects to show a predefined number
of projects per page. Projects navigation is done via the pagination buttons, and/or using
the search mechanism—the CRAFT repository capitalizes on the tag-based search features
provided by OSF. Using a combination of these features the user can locate desired projects
quickly. Lastly, the dashboard allows the user to create a project and uses a modal dialog
pop-up to allow the user to enter the details of the new project.

5.3. Project Overview Page

The project overview is designed in a way to provide a concise summary of the project’s
goals and contents. Figure 5 shows a screen-shot of a project overview page, which is
composed of a project overview tab, and a list of activities tab (e.g., for auditing project
usage). The project overview is separated into two panels. The upper part of the overview’s

12

Figure 5: CRAFT project overview screen.

tab shows (1) the project title, (2) a list of contributors (members of the project), with links
to their respective profiles, (3) a short description of the project, (4) a list of sub-projects
(if this project has one or more sub-projects) visible only to members of the sub-projects,
and (5) a list of comprehensive tags that characterizes the project (the user can also click to
the right of the tags to add a new tag). On the lower part of this tab, a high-customizable
project overview description is provided. This segment provides the use of the Medium
Editor [20], which is a simple intuitive HTML5-based rich text editor. It provides a popup
toolbar that allows text formating (bold, italic, headings, etc.), adding hyperlinks, and also
dragging and dropping images from a desktop. Although, this is very simple, it provides an
efficient mechanism to allow users to create a general project overview description.

5.4. Project Publishing/Registration

When a user makes a release of a project using the publish project in Figure 5, the
system creates a frozen, time-stamped version of a project that cannot be edited or deleted;
so while the original project can still be edited, the registered version cannot. Publishing a
project allows a user to create a snapshot of the project at certain points in time or they
can publish it when the project is completed and ready to share with their collaborators.

Projects can be published immediately or embargoed for up to 4 years, delaying their
public release. Published project cannot be deleted, but they can be withdrawn, which

13

Figure 6: CRAFT discussion forum.

removes the content of the registration but leaves behind basic metadata, like published
title, contributors, and an optional reason for the withdrawal.

5.5. Discussion Forum

The CRAFT repository provides a topic-based discussion forum (Figure 6), where any
contributor can start a new topic or comment on an existing one. Upon a contribution
is performed to any topic, the contributors is automatically subscribed to it and will be
notified (via email) once any other contributor answers/replies to a comment. Discussions
follow the project visibility, i.e., the discussion forum will only be public if the project is
also public. For instance, a general discussion forum (e.g., DARPA announcements), can
be made through a separate public project created only for this purpose. The discussion
feature is built on top of OSF’s chat feature, where we have re-defined the concept of simple
messages into topic threads, and message replies into thread replies.

5.6. Version Control

The CRAFT repository extends the OSF built-in version control features which allows
users to upload and track history of changes made to any stored files including design flows
and IP cores. Uploading a file with the same name as the one stored in the CRAFT repository
will automatically update the revision for that file. In addition, OSF will automatically
maintain a record of all previous versions for files stored in the repository [4]. The EmberJS
application has a view mode called the Time Machine (Figure 7), which enables users to

14

Figure 7: CRAFT Time Machine.

easily switch between the different revisions of a design flow. At any time when viewing
a design flow or IP core, the user can click the Time Machine icon to bring up a list of
revisions and can then select one to visualize or begin editing. Editing the flow or IP core
will automatically update to a newer revision.

6. Craft Collaborative Tools for Circuit Design

This section describes our CRAFT specific extensions that we have developed to en-
able the specification, editing and visualization of design flows and the description of the
intellectual property for each core.

6.1. CRAFT Design Flows

As part of the DARPA CRAFT program, each CRAFT performer team is developing a
user-oriented version of its new design flow. A major requirement for the CRAFT repository
is the ability to capture, document, store, and visualize such flows in a systematic way,
where the flow representation should be flexible and generic enough to accommodate the
specificities of each flow. Therefore, we have developed a common template to capture and
integrate design flows from all teams, that has been revised/expanded continually as needed.
The goal is to capture the steps a DoD designer will have to take to use the flow. In the
first step of the process of design of this representation, we conducted several requirements
gathering meetings (in-person, teleconferences, email exchanges, etc.) to create a high-level
view of the design flow (no flow specific information are required at this point, e.g., options
and controls). In the second step, we extracted expert knowledge to expand the high-level

15

Figure 8: CRAFT design flow represented in a graph format.

flow into a complete running example flow, which included information about options, flow
controls, and data. These interactions allowed us to iterate towards a common schema for
documenting the flows. In the initial phase of the project, we defined the template to capture
design flows as an Excel spreadsheet (facilitates visual communication with the performer
teams).

One of the major capabilities that we wanted to demonstrate in this repository was the
ability for the users to visualize and edit these flows, and perform flow validation (syntacti-
cally and semantically). We decided to describe and formalize the template for the design
flows in JSON format2. Our motivation to use JSON was driven by its lightweight, compact
representation and widespread use in web interfaces and modern Javascript visualization
libraries for input.

Overall, the JSON schema has two major sections, tools and stages. The tools section
describes a list of tools that are used within the flow and specifies the tool name and
version, as well as the tool functionality and specific options or configuration parameters.
The advantage of this approach is that a tool can be easily reused in stages by referencing
its unique identification. The stage section describes the individual steps of the flow, and
are composed of a set of input and output files (which may be provided by external vendor

2CRAFT Flow template schema: https://github.com/pegasus-isi/craft/tree/master/schema

16

https://github.com/pegasus-isi/craft/tree/master/schema

Figure 9: CRAFT design flow represented in a tabular format.

tools), a tool (referenced by the its unique identification), and flow controls, which capture
the decision flow based on the tool output. Currently, the repository automatically validates
the JSON file against the schema, and performs simple semantics validation such as cross-
references of input/output files and tools.

We provide the users two options for describing their flows:

1. Upload a JSON document conformant to the schema. The repository UI automatically
validates and identifies any errors in the document.

2. Use of an interactive visualization tool. The flow visualization and editing tool Fig-
ure 8, provides an interactive interface to visualize the flow (based on the open source
Cytoscape.js project [21]). Users can click on the boxes (representing stages, in-
put/output data) and edges (representing dependency and control flows) to visualize
detailed information about each tool and its control options.

We expect the community to use the interactive visualization tool primarily for creating
and describing their flows. For bulk editing of an existing design flow, we also have developed
tabular visualization using the Handsontable library [22]) facilitates. This tabular viewer
mimics the initial spreadsheet template, (Figure 9) of the flow.

All design flows in the repository are stored in a JSON document conformant to the
schema described above. Versions (history of changes) of the flow are automatically recorded
in the repository. In the repository, each project manages a single flow. We chose this
approach to foster collaborative efforts, since all discussions and files within a project, are

17

Figure 10: Sample Category based organization of IP.

tied to a single flow. Sub-projects can be used to represent multiple flows from a single
performer.

6.2. CRAFT IP

Intellectual Property (also called IP cores) are pre-designed circuit modules, from li-
braries of small cells (e.g., logic gates) to large sub-systems (e.g., a floating-point unit, a
microprocessor, etc.), that are used by ASIC designers to reduce their design effort and cost.
(In turn, IP vendors profit by amortizing their cost across the large number of ASIC design
projects that use their IP.) Each performer in the CRAFT program is developing multiple
IP and planning to distribute these modules, along with their new tools, languages, and
design flows, to the DoD ASIC design teams. Hence, our repository must provide support
for CRAFT performers to submit their IP and the DoD ASIC design teams to be able to
review/search the available IP, identify IP of interest, download IP they wish to use, and
get support from the IP’s creator and other DoD ASIC design teams who have also used
the IP.

Each CRAFT performer is planning to submit a different type of IP, e.g., general purpose
cell library for ASIC designs, analog to digital converters (ADC) as part of a system on chip

18

Figure 11: Intellectual design wizard for entering circuit IP, and allows category specific attributed to be
entered (left), and quality verification attributes (right).

Figure 12: CRAFT IP flow visualized in a graph format.

(SOC), and high level libraries for RTL or software generators in a hardware construction
library for IPs. On the basis of our study of various IPs in a popular open source hardware
repository for IP cores [23], we realized that the organization of IPs should be category based
(Figure 10) and hierarchal in nature. Each category can have a different set of attributes,

19

and categories can be organized as a category tree. Each category has category-specific
attributes and also inherits attributes of its ancestors in the tree.

Based on our survey of CRAFT performers, we identified a set of common attributes that
we expect each IP to inherit. These common attributes can be viewed as being associated
with the single root category of the IP category tree. Similar to our implementation choice
for Design flows, we decided to use JSON format for CRAFT IPs, including visualization
and storage in the repository. However, as evident with the category based organization, we
realized that the schema should be general purpose and extensible to allow for addition of
new categories and relationships between them as well as new attributes. This is unlike our
schema for design flows where we were able to upfront develop a (relatively) fixed schema
and attributes.

The JSON schema for CRAFT IPs is developed using the draft-06 version3, and utilizes
the $id keyword and definitions to structure the valid set of IP categories and sub-categories.
Each category (or sub-category) allowed valued is defined in an enum, and category-specific
attributes are defined as elements of a (sub-)category. We then use the anyOf keyword
to express the rules of inheritance for the IPs. The remaining attributes (e.g., common
attributes, file system, etc.) are defined using common JSON properties.

Even though the schema described above is extensible, we deliberately chose to hide from
the users the functionality to add their own categories, as we want to present a curated and
consistent set of categories in the repository. Instead, we developed an IP wizard that allows
users to identify the category hierarchy (Figure 11-left) to which their IP belongs and enter
the values for its category specific attributes. There are separate tabs (Figure 11-right)
for each of the common category that we have identified and applies to each CRAFT IP.
Once the user has entered the details for the IP using the wizard, they have an option for
visualizing the IP (Figure 12) as a tree structure. The visualization clearly lists the category
hierarchy for the core, in this case Amber Core on the top, and the common categories as
children of the core. Each category box can be clicked to bring up the list of attributes
associated with that category.

7. Future Outlook

In the science domains, a way to share computational methodologies is done via the
use of workflows [24, 25, 26]. Workflows describe the computational tasks that need to be
executed, the data they process and generate, and the order of task execution. Many of the
science workflow users have started out using scripts to coordinate computations – just as
ASIC designers do today. However, this approach has limitations in how design flows can
be put together and re-used. It is also error-prone and often inefficient. Workflows can help
overcome these barriers. In our future work we will explore using workflows in the area of
ASIC design and incorporate workflow definitions in the Craft Repository.

Workflows of design flows will capture the steps of a design flow in a discrete, structured
manner to facilitate reuse, automation, parallelization and optimization. They will allow

3http://json-schema.org/draft-06/schema

20

http://json-schema.org/draft-06/schema

users to connect various sequences of point tools and scripts using input and output files
(with additional data translation where needed). Thus, other designer will be able to easily
inspect the design flow, modify individual components, or change the component parameters.
In addition to the reusability of entire flows, it will also be possible to reuse sub-designs,
incorporating previously characterized and verified components to significantly reduce the
time to completion of an ASIC design.

We also plan to use workflow technologies to perform quality control on data being
submitted to the CRAFT repository. Basing our formats in JSON will allow us to vary
these if they are uploaded as files. We can also use workflows to run specific checks on the
data being deposited int the repository, for example checking the data types and the data
value ranges.

8. Conclusion

This paper presented the CRAFT repository, a collaborative science gateway for accel-
erating circuit realization. The main goal of the repository is to capture and document, in
a systematic way, the design flow process for chip design development. The repository is
built using a hybrid approach, where the front-end has been developed as an EmberJS ap-
plication, which interacts with an instance of the Open Science Framework. The application
was customized to fulfill CRAFT program requirements, in particular the development of
templates and schema to capture the design flows. Currently, the repository is only available
to CRAFT performers but will be soon made available to wider community of DoD ASIC
designers. CRAFT performers include: Carnegie Mellon University, Harvard University,
Princeton University, Stanford University, University of California Berkeley, University of
California, San Diego, and the University of Southern California. Industry collaborators
and government organizations include the Boeing Company, Cadence Design Systems, Inc.,
DARPA, NVIDIA Corporation, Northrop Grumman Corporation, and Synopsys, Inc. Fu-
ture work include the development of a service to capture and document intellectual property
(IP) cores. Usability studies will follow.

9. Acknowledgements

This work was funded by DARPA under contract #HR0011-16-C-0043 “Repository and
Workflows for Accelerating Circuit Realization (RACE)”.

References

[1] Circuit Realization at Faster Timescales (CRAFT), http://www.darpa.mil/program/

circuit-realization-at-faster-timescales.
[2] The Craft Repository, https://craftproject.org/.
[3] EmberJS, http://emberjs.com/.
[4] The Open Science Framework, http://www.osf.io/.
[5] I. J. Taylor, A. Brinckman, E. Deelman, R. Ferreira da Silva, S. Gupta, J. Nabrzyski, S. Park, K. Vahi,

Accelerating circuit realization via a collaborative gateway of innovations, IWSG 2017: 9th Interna-
tional Workshop on Science Gateways accepted.

21

http://www.darpa.mil/program/circuit-realization-at-faster-timescales
http://www.darpa.mil/program/circuit-realization-at-faster-timescales
https://craftproject.org/
http://emberjs.com/
http://www.osf.io/

[6] Lynx design system, https://www.synopsys.com/implementation-and-signoff/

lynx-design-system.html.
[7] The Bitbucket Website, http://bitbucket.org/.
[8] The Github Website, http://github.com/.
[9] J. R. Spies, The open science framework: improving science by making it open and accessible, University

of Virginia, 2013.
[10] Dropbox, https://www.dropbox.com.
[11] Google Drive, https://www.google.com/drive/.
[12] Box, https://www.box.com/.
[13] JSON-API Specification, http://jsonapi.org/.
[14] Django Rest Framework, http://www.django-rest-framework.org/.
[15] M. McLennan, R. Kennell, Hubzero: a platform for dissemination and collaboration in computational

science and engineering, Computing in Science & Engineering 12 (2).
[16] Craft OSF Repository, https://osf.craftproject.org/.
[17] Semantic UI, http://semantic-ui.com/.
[18] Omnigraffle: Diagramming and graphic design tool for mac, https://www.omnigroup.com/

omnigraffle.
[19] The Ember OSF Toolkit, https://github.com/samchrisinger/ember-osf.
[20] HTML5 Medium Editor, https://github.com/yabwe/medium-editor.
[21] Cytoscape.js, http://js.cytoscape.org/.
[22] Handsontable – javascript spreadsheet, https://handsontable.com/.
[23] Design reuse: Design and reuse, the system-on-chip design resource - ip, core, soc, https://www.

design-reuse.com.
[24] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam, K. Moreland, M. Parashar,

L. Ramakrishnan, M. Taufer, J. Vetter, The future of scientific workflows, The International Journal
of High Performance Computing Applications accepted. doi:10.1177/1094342017704893.

[25] E. Deelman, K. Vahi, M. Rynge, G. Juve, R. Mayani, R. Ferreira da Silva, Pegasus in the cloud:
Science automation through workflow technologies, IEEE Internet Computing 20 (1) (2016) 70–76.
doi:10.1109/MIC.2016.15.

[26] R. Ferreira da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, E. Deelman, A characterization of
workflow management systems for extreme-scale applications, Future Generation Computer Systems
accepted. doi:10.1016/j.future.2017.02.026.

22

https://www.synopsys.com/implementation-and-signoff/lynx-design-system.html
https://www.synopsys.com/implementation-and-signoff/lynx-design-system.html
http://bitbucket.org/
http://github.com/
https://www.dropbox.com
https://www.google.com/drive/
https://www.box.com/
http://jsonapi.org/
http://www.django-rest-framework.org/
https://osf.craftproject.org/
http://semantic-ui.com/
https://www.omnigroup.com/omnigraffle
https://www.omnigroup.com/omnigraffle
https://github.com/samchrisinger/ember-osf
https://github.com/yabwe/medium-editor
http://js.cytoscape.org/
https://handsontable.com/
https://www.design-reuse.com
https://www.design-reuse.com
http://dx.doi.org/10.1177/1094342017704893
http://dx.doi.org/10.1109/MIC.2016.15
http://dx.doi.org/10.1016/j.future.2017.02.026

	Introduction
	CRAFT Impact for the Collaboration of Circuit Designers
	Craft Requirements
	A Collaborative Space For Chip Designs
	Authentication
	Project Permissions, Communication, and Privacy
	Version Control
	Visualizing and Editing Design Flows

	Architecture and Design
	CRAFT Design Flow Specification

	Implementation
	Authentication and Registration
	CRAFT Dashboard
	Project Overview Page
	Project Publishing/Registration
	Discussion Forum
	Version Control

	Craft Collaborative Tools for Circuit Design
	CRAFT Design Flows
	CRAFT IP

	Future Outlook
	Conclusion
	Acknowledgements

