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Abstract—Lightning talks of the Workflows in Support of
Large-Scale Science (WORKS) workshop are a venue where the
workflow community (researchers, developers, and users) can
discuss work in progress, emerging technologies and frameworks,
and training and education materials. This paper summarizes
the WORKS 2021 lightning talks, which cover four broad
topics: (i) libEnsemble, a Python library to coordinate the
concurrent evaluation of dynamic ensembles of calculations;
(ii) EduWRENCH, a set of online pedagogic modules that
provides simulation-driven hands-on activity in the browser;
(iii) VisDict, an envisioned visual dictionary framework that
will translate terms, jargon, and concepts between research
domains and workflow providers; and (iv) Pegasus Kickstart,
a lightweight tool for capturing workflow tasks’ performance,
including performance metrics from Nvidia GPUs.

Index Terms—Scientific workflows, training and education, en-
sembles, python, concurrent computing, numerical optimization,
simulation, Nvidia, GPU, monitoring

I. INTRODUCTION

Scientific workflows have proved to be an excellent medium
for representing scientific methods and for enhancing the
efficiency and reproducibility of computational tasks. In the
meantime, modern scientific applications are becoming more
complex, run on heterogeneous resources, and require increas-
ingly computational power, storage capacity, and network and
I/O bandwidths. Workflows provide the necessary abstractions
and mechanisms for efficiently automating the management
of these applications across computing resources (e.g., clouds,
HPC, edge, etc.), while providing fault-tolerance, capturing
provenance records, and enabling reproducible results. Despite
the impressive results to date, workflow research and devel-
opment is still ad-hoc [1]–[3]. As a result, most workflow
systems do not share common and interoperable interfaces,
and therefore workflow applications are locked to a spe-
cific system; there is a steep learning curve for adopting a
workflow system, but limited training materials are available.
Furthermore, there is a strong need for close collaboration and
intensive communication with domain scientists to success-
fully translate high-impact scientific methods into workflows.

While there is a trend to make workflow editors and workflow
dashboards as intuitive as possible, there is a lack of tools that
support direct communication between scientists and workflow
providers.

In this context, the workshop on Workflows in Support of
Large-Scale Science (WORKS) has positioned itself as the
primary venue for workflow researchers and developers to
share and discuss innovative ideas to enhance the current
workflow research and development landscape. Specifically,
WORKS’ lightning talks provide a venue where members of
the community can introduce short talks on works in progress,
emerging technologies and frameworks, and training and ed-
ucation materials to lower the entry barrier and thus increase
adoption. This paper provides overviews of the four lightning
talks from the 16th edition of the workshop (WORKS 2021):

libEnsemble (Section II) – A Python library to coordinate the
concurrent evaluation of dynamic ensembles of calculations.
The library is developed to use massively parallel resources
to accelerate the solution of design, decision, and inference
problems and to expand the class of problems that can benefit
from increased concurrency levels. This talk gives an overview
of the libEnsemble package, highlighting the unique front-end,
modular design, and the capability to run on a large range
of platforms from laptops to thousands of compute nodes on
supercomputers.

EduWRENCH (Section III) – An online educational portal
which emphasizes simulation-based pedagogy for teaching
parallel and distributed computing concepts. This talk gives an
overview of EduWRENCH’s module about workflow concepts
divided into 5 sections. Each section includes: a pedagogic nar-
rative; a simulation-driven hands-on activity in the browser; a
set of practice questions that students answer using simulation
and reasoning, and whose answers can be revealed at will; and
a set of open questions for instructors to be used as homework
or exam questions.

VisDict (Section IV) – A science gateway to enhance the
communication between domain researchers and workflow



providers by implementing a visual dictionary which trans-
lates terms, jargon, and concepts between both communities.
VisDict will also define a methodology to represent and
map different definitions of knowledge by using semantic
representations (e.g., knowledge graphs using ontology).

Pegasus Kickstart (Section V) – A tool for launching com-
puting tasks, monitoring the behavior of tasks, and capturing
information about tasks’ performance and provenance data.
This talk presents a lightweight tool, designed as an extension
to Pegasus Kickstart, to capture monitoring information from
Nvidia GPUs.

II. COORDINATING DYNAMIC ENSEMBLE CALCULATIONS
WITH LIBENSEMBLE

By: Stephen Hudson, Jeffrey Larson, John-Luke Navarro, and
Stefan M. Wild

libEnsemble [4], [5] is one of a number of extreme-scale
workflow software packages, and primarily distinguishes itself
via its generator-simulator function paradigm that sidesteps
requiring users to define task dependencies in favor of data
dependencies between configurable Python user functions.
This allows the user to focus their attention on function logic.

libEnsemble is quick to install and get started with, re-
quiring minimal dependencies. User functions are accessible,
being written in Python, a language already familiar to a
multitude of researchers. User applications can be launched
with no modification via the supplied executors.

This composable design also lends itself to exploiting the
large library of example user functions that are provided with
libEnsemble, maximizing code re-use. For example, users can
easily select an existing generator function while modifying a
simulator function for their specific use case.

While libEnsemble provides a complete ensemble toolkit,
including a task executor interface, its modular design also
allows users to plug in components from other workflow pack-
ages. For example, in scenarios where the direct launching of
MPI applications from the workers is infeasible, libEnsemble
can use the Balsam workflow manager by swapping to the
Balsam Executor.

libEnsemble coordinates its computations via a simple
manager-workers paradigm as shown in Figure 1. Workers call
the Python generator and simulator functions to perform any
type of computation, then exchange data with the manager to
determine and initiate future ensemble members. The manager
and workers can run on one of three communication mediums:
MPI (via mpi4py), multiprocessing (via Python’s built-in
module), and TCP (for distributed/cloud-based environments).

libEnsemble can dynamically change whether workers are
used for simulators or generators and, as of version 0.8, can
re-allocate resources available to each worker, even at a sub-
node level. Again, this helps users avoid manually specifying
directed task dependencies in a DAG or another paradigm
in favor of focusing on data-flow between generator and
simulator function instances.
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Fig. 1. Example of data movement between libEnsemble’s manager and
workers. Here, the manager receives output from a completed simulation and
also some other work requested by a persistent generator. This is given to the
allocation function, along with information about what workers are active or
idle. The allocation function determines what work should be done and with
what resources.

Some of our current use-cases take advantage of libEnsem-
ble’s advanced features. These include multi-fidelity stud-
ies that require dynamic scheduling of resources, generator-
directed cancellation of previously issued simulations (in-
cludes killing of running simulations and retrieving partial
results), and restarting ensembles.

We give a demonstration of one generator from the
libEnsemble library. APOSMM, one of the motivating ex-
amples for libEnsemble, implements a parallel multistart op-
timization algorithm (Figure 2). APOSMM accepts or per-
forms an initial sample of the parameter space and starts
local optimization runs from points that do not have better
points in their respective neighborhood. This neighborhood is
adjusted dynamically as simulation outputs are observed from
APOSMM’s requested candidate points distributed to workers
for evaluation via the simulation function.

libEnsemble is in active development in close collaboration
with researchers from a variety of fields. Other example gener-
ator functions include optimization routines, machine learning,
parameter estimation, or sensitivity analysis. Example simu-
lator functions include particle accelerator simulations, sub-
surface flow, and applications using PETSc/Tao. libEnsemble
has been run on many clusters and HPC systems, including
thousand workers runs on ALCF’s Theta and OLCF’s Summit.

We hope to expand libEnsemble’s user-base, support the
needs of scientists performing ensemble computations, and
continue to demonstrate the capabilities of Python in high-
performance computing.

Acknowledgments. libEnsemble was developed as part of the soft-
ware ecosystem for the U.S. Department of Energy exascale comput-
ing project (ECP).



Iteration: 35; r_k: 0.605

Fig. 2. Example of the APOSMM generator. Random samples with better
points in their neighborhood are marked as blue circles; red pentagons show
random points that start runs; and black squares are points arising from local
optimization runs.

III. LEARNING FUNDAMENTAL WORKFLOW CONCEPTS
WITH EDUWRENCH

By: Henri Casanova, Ryan Tanaka, William Koch, and Rafael
Ferreira da Silva

Education and training in the field of Parallel and Dis-
tributed Computing (PDC) is known to be challenging (a
testimony to this is the establishment of the EduHPC and
EduPar workshop series, as well as the NSF/IEEE-TCPP
Curriculum Initiative on Parallel and Distributed Computing).
One of the challenges is that many relevant learning objectives
are better achieved by providing students with hands-on active
learning opportunities. This requires providing students with
access to compute platforms and application workloads, which
is (i) not feasible at many institutions; (ii) less feasible as
platform and application configurations of interest are more
complex and distributed; and (iii) requires that students be
trained for several technologies and usage policies, which
requires time and effort, and which can get in the way of
achieving basic learning objectives.

The EduWRENCH project (https://eduwrench.org) aims at
providing teaching and training material for fundamental PDC
topics. The material is organized in modules. Each module, or
subset thereof, can be used to enhance/complement the ped-
agogic content in existing courses and/or to provide training
on particular topics. Independent learners can also complete
the modules as a sequence. The main innovation is that each
module provides several in-the-browser hands-on activities.
These activities are in simulation, meaning that they do not
require access to any particular hardware or software besides
a Web browser. Students can achieve hands-on learning:
they can explore various questions and develop answers to

these questions by running simulations with different input
parameters and by analyzing simulation output. Simulators
are implemented using the WRENCH [6] and SimGrid [7]
simulation frameworks.

The EduWRENCH site provides several modules, some
introductory and others more advanced, such as the module
dedicated to workflows.

A. Overview

The Workflow EduWRENCH module is available at https://
eduwrench.org/pedagogic modules/workflows/ and comprises
five sections. Each section includes: a pedagogic narrative; a
simulation-driven hands-on activity in the browser; a set of
practice questions that students answer using simulation and
reasoning, and whose answers can be revealed at will; and a
set of open questions for instructors to be used as homework
or exam questions. The sections in the module are as follow:

Fundamentals – The concept of a workflow as a task-graph
with data dependencies is presented to the students. Then,
using simulation, students are able to observe and reason about
a workflow’s execution on a single multi-core host with a given
RAM capacity and a single disk.

Distributed Execution – The workflow execution is now
distributed on the network, using a remote cluster of multi-
core hosts and a remote data store. Students then observe and
reason about the workflow execution on this platform.

Data Locality – A “cache” data store is now co-located with
the cluster. Using simulation, students can then observe and
reason about the effect of data locality on the execution.

Mixed Parallelism – In this section, workflow tasks are data-
parallel programs, so that the workflow exhibits both task- and
data-parallelism. Students are introduced to these concepts,
and once again are able to understand and experiment with
them hands-on via simulation for a workflow execution.

Capstone – This last section does not include any simulation
activity. Instead, it is a small case-study in which students
apply everything that they have learned in the module to
make decisions regarding resource provisioning (given a fixed
budget) to optimize the execution of a particular workflow.

We provide here an overview of the “Mixed Parallelism”
section in which students first go through a pedagogic narrative
that introduces relevant concepts driven by an example work-
flow. Students are then presented with a simulation scenario for
that same example workflow, as depicted in Figure 3. A 5-task
diamond workflow, in which three tasks are data-parallel with
a different Amdahl’s law parameter α, is to be executed on two
compute nodes, each with 3 cores. The goal is to understand
how using different numbers of cores for the data-parallel tasks
impacts workflow execution and the performance thereof. To
this end, the students can provide parameters to the simulation,
as depicted in Figure 4. The simulation produces different
kinds of output, including a Gantt chart of task executions
(Figure 5) as well as a view of host/core utilization (Figure 6).

https://eduwrench.org
https://eduwrench.org/pedagogic_modules/workflows/
https://eduwrench.org/pedagogic_modules/workflows/


Fig. 3. Mixed parallelism simulation scenario.

Fig. 4. Mixed parallelism simulation input form.

Students are then asked to answer several practice questions,
using the above simulation to determine or double-check
answers. For instance, one question is “Say that you must
configure two of the data-parallel tasks to use 1 core, and
the third one to use 3 cores. Which task should use 3 cores
to achieve the shortest execution time? Come up with an
answer based on reasoning and then check your intuition in
simulation.” When observing students going through this and
other simulation activities, we find that the vast majority of

Fig. 5. Mixed parallelism simulation output: Gantt chart of task execution.

Fig. 6. Mixed parallelism simulation output: host/core utilization throughput
time.

them use the simulation to explore scenarios/options that are
not part of the specific questions of them, but often merely to
satisfy their own curiosity.

B. Usage

The effectiveness of the simulation-based pedagogic ap-
proach used in EduWRENCH has been demonstrated via
qualitative and quantitative user-studies in the classroom. In
terms of the specific workflow module, it has been used
successfully to date in more than four undergraduate university
courses at our institutions. Early evaluation results obtained in
the classroom have shown the effectiveness of the simulation-
driven pedagogic approach, and student feedback has been
used to improve the pedagogic content and its delivery [8].
Usage logs show that the module has been used by users
worldwide as part of other university courses. Also, this
module has been used for other purposes, such as for training
incoming Masters students that join the SciTech research
group at the USC Information Sciences Institute.

Acknowledgments. This work is funded by NSF contracts #1923539
and #1923621; and partly funded by NSF contracts #2103489, and
#2103508. This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.



Fig. 7. An example for an entry for the visual dictionary where the definition is the same while the illustration illuminates the different aspects of an
experiment per domain.

IV. VISDICT: ENHANCING THE COMMUNICATION
BETWEEN WORKFLOW PROVIDERS AND USER

COMMUNITIES VIA A VISUAL DICTIONARY

By: Sandra Gesing, Rafael Ferreira da Silva, Ewa Deelman,
Michael Hildreth, Mary Ann McDowell, Natalie Meyers, Ian
Taylor, and Douglas Thain

Thousands of researchers [9] rely on scientific workflows
for managing analyses, simulations, and other computations in
almost every scientific domain [10], [11]. Scientific workflows
have underpinned some of the most significant discoveries of
the last decade, including the first detection of gravitational
waves from colliding black holes [12]. The creation of work-
flows supporting a research topic requires an understanding of
the targeted problem and can be a labor-intensive and error-
prone process. One source of errors is the communication
between domain researchers and workflow providers. While
the agreement on one natural language for communication -
or involving a translator - is the typical set up communication,
there is a lack of tools or translators for communication
between research domains and computer science. The project
VisDict will fill this gap by providing a set of vocabularies
in a science gateway to enhance communication. The goal
is to present a definition for different domains and workflow
providers and thus, serve as source for terms. Adding visual-
ization will lower the communication barrier further following
the saying “A picture is worth a thousand words.”

VisDict just started and the project plans a series of surveys
and interactions with the workflow and domain science com-
munities. Surveys and focus groups are an integral part of the
project, and will be crucial for identifying the terms that will
compose the base of common knowledge between the commu-
nities. Another goal is to define a methodology to represent

and map different definitions of knowledge. This goal will
be accomplished through the use of semantic representations
(e.g., knowledge graphs using ontology) in which computer- or
domain-specific terms will be related to definition of terms in
each domain. A science gateway will convey knowledge maps
of the domain-specific terms in the form of visual dictionaries.
The key for an excellent dictionary is to understand the
pain points of user communities and workflow providers in
the communication. The goal is to integrate definitions of
the terms each group uses and they are familiar with and
extend definitions via visual presentations. Figure 7 shows
the example of the term “experiment”. While the definition
is the same for computer science, biology and physics, the
illustration reveals the different aspects the researchers might
have in mind when talking about experiments. Another use
case for the visual dictionary would be a term like library.
The definitions per domain would be different as well as the
visualization per domain.

The vision is that the VisDict framework can be used as
DaaS (dictionary-as-a-service) for many research domains and
more IT-related domains beyond workflows.

Acknowledgments. This work is funded by NSF contracts #2100561
and #2100636.

V. A LIGHTWEIGHT GPU MONITORING EXTENSION FOR
PEGASUS KICKSTART

By: George Papadimitriou and Ewa Deelman

Compute jobs in the Pegasus workflow management system
(WMS) [12] are wrapped using a lightweight C executable
called “pegasus-kickstart” (Kickstart) [13], [14] that captures
runtime job performance and provenance data. The toolkit



Fig. 8. Kickstart online monitoring.

collects useful information about the execution of the wrapped
task such as the environment setup, performance data and
output logs. Kickstart is a very important component of
the Panorama data collection architecture [15]. In Pegasus’
Panorama branch [16], Kickstart has been extended to include
fine-grained monitoring capabilities that can pull resource
usage statistics of workflow running tasks within a user-
defined time interval. This information is then published to an
AMQP [17] endpoint in JavaScript Object Notation (JSON)
format so it can be ingested into a repository, saved to a
storage system, or uploaded to an analysis framework (e.g.,
Elasticsearch [18]). Until now though, Kickstart could only
collect statistics available in Linux’s procfs [19], ignoring
other subsystems, such as graphics processing units (GPUs).

A. Approach

To extend Kickstart’s capabilities with monitoring support
for Nvidia GPUs, we are leveraging Nvidia’s monitoring
library (NVML) [20]. NVML offers a C-based API for mon-
itoring and managing various states of Nvidia GPU devices.
We have extended Kickstart (Figure 8) with a lightweight C
wrapper for the NVML library that queries the state of all
the GPU devices available on an execution host machine.
Kickstart polls for new GPU statistics on a user-defined
interval and populates JSON formatted events. Kickstart GPU
polling supports multithreading and creates a new polling
thread for each GPU device, which is essential when sampling
the PCI-Express bus utilization.

Events. During a job’s execution there are three events pro-
duced by Kickstart containing information about the Nvidia
GPUs.

• kickstart.inv.online.gpu.env: This event is produced
once at the beginning of the job and it contains informa-
tion about the GPU environment (e.g., number of GPUs,
driver version, type of GPUs etc.)

• kickstart.inv.online.gpu.stats: This event is produced
throughout the execution and it contains a snapshot of the

GPU counters at that given time (e.g., GPU utilization,
memory usage, power consumption etc.)

• kickstart.inv.online.gpu.stats.max: This event is pro-
duced at the end of the execution, and it contains max
values observed during the run (e.g., max GPU utilization,
max GPU temperature etc.)

All of the events are easily correlated with workflow runs
and their respective jobs, since they are annotated with work-
flow related attributes (e.g., workflow uuid, dag job id). In the
case of the GPU statistics event, there are some optional fields
that are controlled via environment variables. The full list and
description of the fields available in the produced events can
be found on GitHub [21].

B. How to use

Installation. This tool is available under Pegasus Panorama
branch [16] and can be used independently of Pegasus.
Precompiled versions of this branch can also be found on
the Pegasus download server [22]. Even though this tool is
distributed with the Pegasus WMS it is a standalone tool
and can be installed and used without using the rest of the
system. On the Pegasus download server you will find the
lightweight worker package that contains Kickstart and other
essential Pegasus’ tools (e.g., pegasus-transfer), which can be
downloaded and installed independently.

Configuration. An example of using GPU-aware Kickstart
with Pegasus is the “Predict Future Sales” workflow [23].
It has been configured to use the “–monitoring” flag during
workflow generation. This flag instructs Pegasus Panorama to
enable GPU monitoring for the jobs requesting GPUs, and
orchestrates the data collection via an AMQP point.

To collect GPU traces using Kickstart as a standalone tool,
one must set the following flags to “pegasus-kickstart”:

• -m ¡interval¿: enables online monitoring and collects
traces at every ¡interval¿

• -G: enables GPU monitoring (Note: this flag is considered
only if the -m flag has been provided)

Finally, an environment variable sets the location where the
statistics will be published (KICKSTART MON URL). Either
file or AMQP endpoints can be specified. An example of a
standalone invocation can be seen in Listing 1. For more we
refer you to the “pegasus-kickstart” documentation [14].

C. Related and Future Work

Nvidia offers tools for detailed profiling and analysis (e.g.,
NVIDIA Nsight Tools), which provide in depth analysis of
GPU kernels and can aid in debugging and performance
optimizations. However, these tools add extra overhead that
cannot be tolerated in production and they don’t integrate well
with other third party tools (e.g., monitoring tools of workflow
management systems). Additionally, HTCondor [24] in version
8.8.9 introduced GPU monitoring, but it only offers statistics
about the avg. GPU utilization and maximum memory usage,
and no tracing is supported. With Kickstart we are able to



Listing 1 Example invocation of GPU monitoring
export KICKSTART_MON_URL = \

rabbitmq://[USERNAME:PASSWORD]@hostname[:port]/api/exchanges/[VIRTUAL_HOST]/[EXCHANGE_NAME]/publish
or
export KICKSTART_MON_URL = file://filename
pegasus-kickstart <args> -G -m 10 ./exec

correlate GPU monitoring traces directly with workflow job
executions.

We are currently working on extending the GPU monitoring
feature to more devices such as AMD’s ROCm GPUs.

Acknowledgments. This work is funded by DOE contract #DE-
SC0012636 and NSF contract #1664162.
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