
1

Automating Environmental Computing Applications
with Scientific Workflows

Rafael Ferreira da Silva∗, Ewa Deelman∗, Rosa Filgueira‡, Karan Vahi∗, Mats Rynge∗

Rajiv Mayani∗, Benjamin Mayer§
∗ University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA

‡ School of Informatics, University of Edinburgh, Edinburgh EH8 9LE, UK
§ Oak Ridge National Laboratory, Oak Ridge, TN, USA

{rafsilva,deelman,vahi,rynge,mayani}@isi.edu, rosa.filgueira@ed.ac.uk, mayerbw@ornl.gov

Abstract—Computational environmental science applications
have evolved and become more complex over the last decade.
In order to cope with the needs of such applications, com-
putational methods and technologies have emerged to support
the execution of these applications on heterogeneous, distributed
systems. Among them are workflow management systems such as
Pegasus. Pegasus is being used by researchers to model seismic
wave propagation, to discover new celestial objects, to study
RNA critical to human brain development, and to investigate
other important research questions. This paper provides an
introduction to scientific workflows and describes Pegasus and
its main features. The paper highlights how the environmental
science community has used Pegasus to automate their scientific
workflow executions on high performance and high throughput
computing systems by presenting three use cases: two Earth
science workflows, and a climate science workflow.

Index Terms—Environmental Computing; Scientific work-
flows; Pegasus Workflow Management System

I. INTRODUCTION

Scientific computing is the mainstream method for scientists
that want to extract the maximum information out of their
data—which are often obtained from scientific instruments
such as the USArray Transportable Array [1] (seismic in-
struments). These computations often require the processing
and analysis of vast amounts of data to understand complex
system behaviors and interactions. In order to support the
computational and data needs of today’s science, scientists
have used distributed computing infrastructures (e.g., grids,
clouds, campus clusters, and supercomputers) to efficiently
compute their analyses in a reliable and scalable way. This
is the case in fields such as seismology, climate and ocean
modeling, hydrology, astronomy, bioinformatics, and physics.

In the meantime, scientific workflows have emerged as a
flexible representation to declaratively express complex ap-
plications with data and control dependencies. As a result,
many scientific workflow management systems (WMSs) have
been developed [2]–[5], and they have been intensively used
by various research communities [6]. Workflows allow re-
searchers to easily express multi-step computational pipelines
involving simulation, data analysis, and visualization; and to
abstract the specificities of the computing environment allow-
ing scientists to focus on the experiment definition and the
analysis rather than the configuration and deployment of the
execution environment. Additional advantages of workflows

include reusability (aids reproducibility), data provenance,
fault-tolerance, parallel distributed computations, among oth-
ers.

In this paper, we provide an overview of scientific work-
flows, presenting their main characteristics and applicability, as
well as examples of workflow management systems (WMSs)
that address different classes of problems. We describe the
Pegasus WMS [2], a well-established workflow system that is
widely used by the scientific community to seamlessly manage
the execution of computations across distributed, heteroge-
neous systems. Then, we illustrate three use cases from the
Earth science (CyberShake [7] and Seismic Ambient Noise
Cross-Correlation [3]) and the climate science (ACME [8])
domains, highlighting how these communities have benefited
from the use of scientific workflows, in particular Pegasus, for
running small- and large-scale computations in the cloud and
on national cyberinfrastructures.

This paper is structured as follows. Section II describes pre-
vious works, and highlights selected applications. Section III
presents an overview of scientific workflows and workflow
management systems. Section IV describes Pegasus, its prop-
erties, and its main capabilities. Section V describes the three
environmental computing workflows for the Earth science and
climate science domains, and Section VI concludes the paper.

II. RELATED WORK

Scientific workflows have been used for over a decade,
and a plethora of workflow management systems have been
developed to attend the different needs of computational sci-
ence applications [2]–[5]. As a result, workflow management
systems became the focus of many characterization studies
and surveys [9], [10]. In environmental computational science,
most of the applications that use workflows target large-scale
analyses on distributed systems [3], [7], [8]. Workflows are
also extremely useful to manage the execution of dispersed
analyses on heterogeneous systems [11]. Therefore, in this
paper we provide an introduction to scientific workflows
highlighting their main properties and functionalities, and how
they may fit the requirements of environmental computing
applications.

2

import pickle

from obspy.core import read

from obspy.xseed import Parser

stream = read('20100206_045515_012.BGLD')

i = 0

for trace in stream:

 i += 1

 with open('trace_%s.trace' % i, 'wb') as output:

 pickle.dump(trace, output)

preprocess.py

import pickle

from obspy.xseed import Parser

parser = Parser('dataless.seed.BW_BGLD')

trace = pickle.load(args[1])

trace.stats.paz =

 parser.getPAZ(trace.stats.channel)

trace.stats.coordinates =

 parser.getCoordinates(trace.stats.channel)

process.py

trace_1.trace trace_2.trace

import pickle

from obspy.xseed import Parser

parser = Parser('dataless.seed.BW_BGLD')

trace = pickle.load(args[1])

trace.stats.paz =

 parser.getPAZ(trace.stats.channel)

trace.stats.coordinates =

 parser.getCoordinates(trace.stats.channel)

process.py

trace_1.out trace_2.out

Fig. 1: An example of a workflow that processes seismol-
ogy data. The workflow is composed of two task types
(preprocess.py and process.py), which are Python pro-
grams.

III. SCIENTIFIC WORKFLOWS

Scientific workflows are an important abstraction for the
composition and automation of complex scientific applications
in a broad range of domains. They provide an abstraction
above the individual application components and often abstract
the details of the execution environment. Workflows allow
scientists to easily express multi-step computational tasks,
for example retrieve data from an instrument or a database,
reformat the data, and run an analysis; while automating data
movement between workflow processing stages. Typically, a
workflow is described as a directed acyclic graph (DAG),
where the nodes are tasks and the edges are dependencies (of-
ten data dependency). Workflows may also contain conditional
statements (if-then-else statements, exception handling)
or loops. Fig. 1 shows an example of a workflow composed
of two tasks (preprocess.py and process.py), where
dependencies are expressed as data files. In this example, the
process.py tasks only start their execution, once their input
data (trace_1.trace and trace_2.trace) are available,
i.e. the task preprocess.py is successfully completed.

Task. In scientific workflows, a task often represents a pro-
gram (or a script) written in any programming language, which
is seen as a black box by the workflow engine—the workflow
system is not aware of the intrinsics of the application code,
it is limited to the invocation of the application with given
parameters. Few workflow management systems require the
implementation of the workflow mechanism as part of the

application code (white box application). This is typically the
case of shared memory applications. A task may also represent
a local or remote Web service, sub-workflows, etc. In addition,
a single task execution may require a single CPU (embar-
rassingly parallel, no communication between processes), or
multiple CPUs (e.g., MPI-like, i.e. tightly coupled processes—
there is communication between processes).

Dependency. Workflow dependencies define the order that
tasks should be executed in a workflow—the outcome of par-
ent tasks are the input for child tasks. Typically, dependencies
are based on flow of data between tasks (as shown in Fig. 1).
However, they can as be expressed as any kind of event
that could trigger the execution of the subsequent tasks or
advance the workflow execution. Other types of dependencies
include conditional statements, exceptions (error handling),
user triggered action (the workflow waits for the user’s input
to proceed with the execution), among others.

A. Workflow Composition

Scientific workflows are described as high-level abstraction
languages which mask the complexity of execution infrastruc-
tures to the scientist. The example shown in Fig. 1 describes
the problem that the scientist is aiming to solve as a multi-
step computational analysis. Note that this representation does
not provide any detail about the underlying execution platform,
i.e., it is an abstract workflow. During execution, the workflow
system concretizes the abstract workflow by mapping it to
the execution infrastructure, which therefore is now called the
executable workflow. The mapping phase may add additional
tasks to the workflow to enable its execution on the comput-
ing platform (e.g., stage in input data), and performs static
workflow optimizations (e.g., data cleanup, task clustering,
workflow reduction, etc.).

Besides the execution environment abstraction, abstract
workflows also foster reproducibility through workflow reuse
and data provenance. The abstract workflow can run in dif-
ferent execution environments with no alterations. For in-
stance, scientists can share their workflows within the scientific
community, and other scientists can reproduce an equivalent
analysis following the same recipe. Data provenance (the
process of tracing and recording the origins of data and its
movement) allows scientists to easily trace the origin of the
data produced.

Workflow Patterns and Design. The shape of a workflow
may assume a variety of different forms. For instance, in
neuroinformatics and bioinformatics, most of the workflows
are structured as pipelines (sequential tasks, no paralleliza-
tion). More complex workflows are composed of parallel
splits and merges, decision points (conditions), etc. [12].
As a result, several workflow languages were developed to
describe workflows. A workflow language is a formalism
expressing the causal/temporal dependencies among a number
of tasks to execute. Currently, there is no standard way to
describe a workflow (most workflow systems defined their
own language), although there are some efforts in trying to
develop a common workflow language [13]. Current workflow

3

management systems provide either a graphical interface to
build workflows (drag-and-drop) or command line interfaces
(via APIs), or both. While graphical interfaces provide easy
mechanisms to create workflows, they may limit the versatility
of workflows to handle large-scale complex applications—it is
challenging to visualize and manipulate a graph with hundreds
of thousands of nodes. On the other hand, command line
interfaces require programming skills. However, they easily
scale to tackle large-scale complex problems.

B. Workflow Execution
Workflow interpretation and execution are handled by a

workflow engine that manages the execution of the applica-
tion on the computational infrastructure. As aforementioned,
several workflow management systems (WMSs) have been
developed to address different requirements of diverse domain
applications. For example, workflow systems differ in support
of task-oriented or stream-based workflows. Task-oriented
WMSs typically support parallel computations, where tasks
may run at the same time and there is no dependency between
them (e.g., Pegasus [2], Makeflow [4], etc.). On the other
hand, stream-based WMSs provide concurrent task execution,
i.e. a task (with precedence constraint) can start its execution
before its parent tasks have completed (e.g, dispel4py [3],
Nextflow [5], etc.).

Workflows may simply run in the local user’s environ-
ment (e.g., laptop or desktop machine), or in large, diverse,
heterogeneous, distributed systems. The scale of the system
depends mostly on the complexity of the applications, and
on the capabilities of the systems. For example, parameter
sweep studies are often composed of independent small tasks
that can significantly benefit from grid or cloud computing
environments. Parallel applications often require specialized
systems such as clusters and supercomputers (for large scale
applications), which can provide high connectivity with low la-
tency (required for the high frequency of message exchanges).
Note that a workflow may be composed of different application
types, where some of the workflow tasks are optimized to
run in high throughput systems (e.g., grids), and the re-
mainder require high performance computing platforms (e.g.,
supercomputers). The data movement between the different
computing environment can then automatically handled by the
WMS.

Fig. 2 shows an example of a workflow that runs in different
computing infrastructures. The workflow is composed of a
split job, which divides the input data into several small
chunks of data that can be processed independently (e.g., data
preparation, filtering, etc.). These tasks (process.R) can then
run in high throughput systems. The following step (merge.c)
is a parallel task (MPI application) that will merge the con-
tents of the processed data (e.g., cross-correlation analysis),
and requires high performance systems such as clusters or
supercomputers. Finally, the outcome of the analysis may be
visualized locally on the scientist’s desktop machine.

IV. PEGASUS WORKFLOW MANAGEMENT SYSTEM

In this section, we present Pegasus [2], a well established
scientific workflow management system for automating, recov-

split.sh

process.R process.R process.R

merge.c

visualization.py

G
rid

 o
r C

lo
ud

C

om
pu

tin
g

H
PC

cl
us

te
r

Lo
ca

l

MPI application

Parameter Sweep
Analysis

Local visualization
of results

D
at

a
Tr

an
sf

er
s

Fig. 2: An illustration of a workflow to that runs in a
heterogeneous computing environment. The top part of the
workflow performs a parameter sweep analysis and runs on
grids or cloud environments. The middle part is an MPI-like
application and requires HPC resources. The bottom part is a
simple visualization script that runs locally in the scientist’s
computer. Data transfers between different computing environ-
ments are automatically handled by the workflow system.

ering, and debugging scientific computations. Pegasus focuses
on scalable, reliable, and efficient workflow execution on a
wide range of systems, from the user’s desktop to state-of-the-
art high-throughput and high-performance computing systems.

Pegasus bridges the scientific domain and the execution en-
vironment by automatically mapping high-level abstract work-
flow descriptions onto distributed heterogeneous resources. It
can manage data on behalf of the user, infer the required data
transfers, register data into catalogs, and capture performance
information while maintaining a common user interface for
workflow submission. In Pegasus, workflows are described
abstractly as directed acyclic graphs (DAGs), where nodes
represent individual computational tasks and the edges repre-
sent data and control dependencies between tasks. The abstract
workflows do not have any information regarding physical
resources or physical locations of data and executables. The
abstract workflow description is represented as a DAX (DAG
in XML), describing all tasks, their dependencies, their re-
quired inputs, their expected outputs, and their invocation
arguments.

A. Overview of Pegasus Functionalities

Pegasus has a number of features to facilitate and automate
workflow executions, and foster collaboration and reproducible
research:

1) Versatility: Pegasus defined workflows can run in dif-
ferent computing environments without modifications to
the abstract workflow. The same workflow can run on a
single system or across a heterogeneous set of resources.

4

2) Data Management: Pegasus automatically handles data
transfers. It autonomously determines the best available
replica of the input data; performs data movement be-
tween tasks (within the same computer system, or across
different computing platforms); and records output data
into data catalogs.

3) Fault-tolerance: Pegasus provides several mechanisms
to mitigate faults. Tasks and data transfers are auto-
matically retried in case of failures, alternative data
sources are used to stage the data, etc. Automated stor-
age constraints mechanisms ensure that storage limits
are honored by removing unnecessary data during the
workflow execution. Pegasus also provides workflow
recovery support through workflow-level checkpointing,
and by providing a rescue workflow, a reduced version
of the original workflow containing only the tasks that
were not executed.

4) Performance Optimizations: Pegasus performs automatic
workflow optimizations for improving the efficiency of
the workflow execution. Tasks are reordered, grouped,
and prioritized in order to increase the overall workflow
performance. Pegasus determines existing workflow’s
output data, and prunes the workflow to prevent unnec-
essary re-computation.

5) Scalability: Pegasus can run workflows composed of
a few tasks up to millions of tasks. It also provides
scaling capabilities to dynamically adapt to the number
of available resources at runtime.

6) Provenance: Pegasus enacts reproducibility through its
ability to systematically capture provenance information
for the derived data products. In addition to data prove-
nance, Pegasus captures task performance data, which
aids debugging.

B. Creating Pegasus Workflows

Workflow composition within Pegasus is done via APIs. Pe-
gasus provides application programming interfaces in Python,
Java, R, and Perl to generate the abstract workflow as a
directed acyclic graph in XML (DAX). Fig. 3 shows the pseu-
docode using the Python API for generating the seismology
example workflow presented in Fig. 1. The advantages of
using an API include the flexibility provided by programming
languages for defining large-scale workflows. For instance,
parameter sweep studies can be easily defined using a simple
for loop; a variety of workflows can be generated based on
conditional statements evaluated using the workflow’s input
data (i.e., if statements may define whether a set of tasks would
be part of the workflow). A complete description of the APIs
can be found in the Pegasus’ documentation [14]. Note that
the abstract workflow does not require any information about
the files locations nor details about the computing platform.

Pegasus also provides mechanisms to define dynamic work-
flows, i.e., workflows that are generated at runtime. Dynamic
workflows can be expressed as sub-workflows—a task of the
main workflow is actually an invocation to a DAX generator,
that will create a sub-workflow during execution based on the
outcomes of the previous tasks (parent tasks).

#!/usr/bin/env python

from Pegasus.DAX3 import *

Create a DAX

workflow = ADAG(‘seismology_workflow’)

Add a preprocess job

preprocess = Job(‘preprocess’)

trace1 = File(‘trace_1.trace’)

trace2 = File(‘trace_2.trace’)

preprocess.uses(trace1, link=Link.OUTPUT)

preprocess.uses(trace2, link=Link.OUTPUT)

workflow.addJob(preprocess)

Add left process jobs

process1 = Job(‘process’)

out1 = File(‘trace_1.out’)

process1.uses(trace1, link=Link.INPUT)

process1.uses(out1, link=Link.OUTPUT, transfer=True)

workflow.addJob(process1)

Add right process jobs

process2 = Job(‘process’)

out2 = File(‘trace_2.out’)

process2.uses(trace2, link=Link.INPUT)

process2.uses(out2, link=Link.OUTPUT, transfer=True)

workflow.addJob(process2)

Add dependencies

workflow.depends(parent=preprocess, child=process1)

workflow.depends(parent=preprocess, child=process2)

Fig. 3: Example of a DAX generator for the seismology
example workflow shown in Fig. 1.

C. Executing Pegasus Workflows

For running workflows, Pegasus requires the specification of
three different types of information catalogs: the (1) site cata-
log—describes the computing sites where the workflow tasks
can be executed; the (2) transformation catalog—describes
all of the executables (programs, also called transformations)
used by the workflow tasks; and the (3) replica catalog—
describes all of the input data stored on external servers.
Pegasus uses the information provided in the catalogs to
automatically map the abstract workflow onto an executable
workflow (with all additional tasks to perform data stage in/out
and optimizations).

Execution Environments. The simplest execution mode is
the local method, where the workflow runs entirely in the
scientist’s machine. This method is particularly useful for de-
velopment tests, or for scientists who want to automate small-
scale analyses. Large-scale computations may be executed
on grid computing platforms (e.g., Open Science Grid [15]),
academic (e.g., NSF Chameleon [16]) and commercial (e.g.,
Amazon EC2 [17], Google Cloud [18], etc.) cloud computing
platforms [19], campus clusters and national cyberinfrastruc-
tures (e.g., XSEDE [20]). During execution, the workflow is
orchestrated to release tasks as they become available (parent
tasks are completed), and data transfers are automatically
performed within the same platform or across computing
infrastructures. Note that the complexity of running workflows
may increase depending on the selected infrastructure. For

5

Pegasus

Campus
Clusters

National
Computing

InfrastructuresClouds

Cloud
Storage

Grids

HTTPFTP
SCP

Standard
Protocols

Grid
Protocols

SRM
GridFTP

Data
Systems

Fig. 4: Overview of execution environments (bottom grey
hexagons), and data management protocols and services (top
white hexagons) supported by Pegasus.

example, high-performance computing systems (HPC) often
have stricter access, thus it may require additional steps to
setup the workflow execution environment. The workflow
execution complexity may also be impacted by the number of
different heterogeneous computational platforms the workflow
runs on. On the other hande, this may significantly improve
the efficiency of the workflow execution.

Data Management. During the mapping process, Pegasus
performs several optimizations as highlighted above. It pro-
vides mechanisms to automate data transfers from a number
of different data protocols and services. Pegasus handles from
simple files copies (using the basic linux command cp or
symlink) within the same resource, up to remote data trans-
fers using standard protocols such as HTTP, FTP, and SCP. For
workflow runs conducted in grid environments, Pegasus uses
SRM and GridFTP protocols, the most used transfer protocols
available in these systems. For runs in cloud environments,
Pegasus also interacts with cloud storages such as Amazon S3
and Google Cloud Storage using their data transfer clients. Ad-
ditionally, Pegasus also provides mechanisms to interact with
advanced data system such as iRODS [21] and XRootD [22].

Fig. 4 shows an overview of all execution environments
and data management services and protocols supported by the
Pegasus system. Note that a workflow may be composed of
several different environments, and data may be staged in/out
from/to different protocols or services.

Monitoring. Workflow monitoring is fundamental for debug-
ging and following the progress of the workflow execution.
Pegasus provides a suite of tools for monitoring and debugging
workflows at runtime or when the workflow execution is
completed. The Pegasus Dashboard is a web-based application
that provides real-time monitoring of workflow executions. It

Fig. 5: Screenshot of the Pegasus monitoring dashboard.

shows the status of the workflow and its tasks, task char-
acteristics, statistics, and performance metrics (Fig. 5). In
addition to the dashboard, Pegasus provides command-line
tools (e.g., pegasus-statistics, pegasus-analyzer) to
inquiry specific issues or characteristics of the workflow.

V. USE CASES: ENVIRONMENTAL COMPUTING
WORKFLOW APPLICATIONS

In the past years, the environmental science community has
used scientific workflows to address the simulation of complex
phenomena such as climate changes and earthquake hazards.
Below, we describe three workflow applications that have used
Pegasus as a mean to seamlessly automate the execution of
environmental computing workflows in distributed systems.

A. Cybershake

As part of its research program of earthquake system
science, the Southern California Earthquake Center (SCEC)
has developed CyberShake [7], a high-performance comput-
ing software platform that uses 3D waveform modeling to
calculate physics-based probabilistic seismic hazard analysis
(PSHA) estimates for populated areas of California. A Cy-
berShake hazard curve computation can be divided into two
phases. In the first phase, a 3D mesh of approximately 1.2
billion elements is constructed and populated with seismic
velocity data. This mesh is then used in a pair of wave
propagation simulations that calculates and outputs strain
Green tensors (SGTs). The SGT simulations use parallel wave
propagation codes and typically run on 4,000 processors. In
the second phase, individual contributions from over 400,000
different earthquakes are calculated using the SGTs, then these
hazard contributions are aggregated to determine the overall
seismic hazard. These second phase calculations are loosely
coupled, short-running serial tasks. To produce a hazard map
for Southern California, over 100 million of these tasks
must be executed. The extensive heterogeneous computational
requirements and large numbers of high-throughput tasks

6

necessitate a high degree of flexibility and automation; as a
result, SCEC utilizes Pegasus workflows for execution [23].

Recently, SCEC has conducted a study to run 336 Cy-
bershake workflows over 38 days on Blue Waters (NCSA)
and Titan (OLCF). Pegasus managed the execution of the
workflows, which consumed about 1.4 million node-hours,
and automated the management and movement of 550 TB of
data within the workflows, where 197 TB were transferred
from Titan to Blue Waters, and 9.8 TB staged back to USC
HPC (∼7M files) [24]. The scalability required to achieve the
science goal underscores the need for Pegasus to automate
the execution and data management of SCEC’s large-scale
workflows.

B. Seismic Ambient Noise Cross-Correlation

Recently, the Pegasus team and the dispel4py [3] (a stream-
based workflow system) team have collaborated to enable
automated processing of real-time seismic interferometry and
earthquake repeater analysis using data collected from the
IRIS database [25]. Such analyses require a large num-
ber of waveform cross-correlations, which is computation-
ally intensive. The workflow (Seismic Ambient Noise Cross-
Correlation) periodically reads data from the repository (about
every hour), and performs waveform cross-correlations analy-
ses through thousands of computational tasks. The workflow
consists of two main phases:

• Preprocess—each continuous time series from a given
seismic station (called a trace), is subject to a series of
treatments. The processing of each trace is independent
from other traces, making this phase embarrassingly
parallel (complexity O(n), where n is the number of
stations); and

• Cross-Correlation—pairs all of the stations and cal-
culates the cross-correlation for each pair (complexity
O(n2)).

The workflow is implemented as a hybrid workflow ap-
proach to enable the execution of data-intensive stream-based
workflow applications across different e-Infrastructures. The
workflow execution is performed in heterogeneous comput-
ing platforms described as Docker containers, which can be
deployed and executed in cloud computing environments.
Fig. 6 shows an illustration of the Seismic Ambient Noise
Cross-Correlation workflow implementation. A single (non-
stream) run of the workflow requests an hour data from
IRIS services (USArrayTA [1], data from 394 stations), and
executes the Preprocess phase in about 8 minutes (using
the OpenMPI cluster deployed in Container 2), while the
Cross-correlation phase requires about 2 hours for pro-
cessing (using the Apache Storm [26] cluster deployed in
Container 3). A stream-based version of the workflow reads
data from IRIS services every 2 hours.

The stream-based executions of the Seismic Ambient Noise
Cross-Correlation workflow are managed by dispel4py, while
the data movement between different execution infrastructures,
and the coordination of the application execution are auto-
matically managed by Pegasus. This approach enables the
distributed allocation of stream-based workflows (represented

Docker Container 2
OpenMPI cluster

Docker Container 1
Pegasus and dispel4py

Docker Container 3
Storm cluster

Pegasus
workflow (DAX)

dispel4py preprocess workflow
Automatic translation

MPI application

dispel4py postprocess workflow
Automatic translation: Storm topology

Trace
Prep

decim

detrend

remove
resp

filter

white

calc fft

demean

Read
Prep xCorr Write xCorr

Results

Read
Traces

Write
Prep.

Preprocessed data

Cross-correlated results

d4py
preproc

.

d4py
postpro

List of stations

Preprocessed data

Cross-correlated results

List of stations

Preprocessed data

Fig. 6: Overview of the Seismic Ambient Noise Cross-
Correlation workflow using Pegasus and dispel4py to automate
computation on distributed resources (OpenMPI and Apache
Storm clusters). Pegasus orchestrates the workflow execution,
and manages data movement between different computing en-
vironments, while dispel4py executes stream-based workflows
within a container.

as tasks of the Pegasus workflow) to the appropriate computing
resources—allocate the workflow to the resource that could
execute it in the most efficient way.

C. ACME

The Accelerated Climate Modeling for Energy (ACME)
project is using coupled models of ocean, land, atmosphere and
ice to study the complex interaction between climate change
and societal energy requirements. The ACME workflow [8],
[27] automates the manual effort involved in monitoring
and resubmitting the model code in case of failures, and
provides periodic reporting for validation of science outputs.
The workflow divides a large climate simulation into several
stages (Fig. 7). Each stage completes a portion of the total
target simulation time. Each stage also produces history files,
which are used by the workflow to automatically compute
summary data called climatologies. This climatology data can
be reviewed periodically by project scientists to ensure that
the simulation is progressing as expected, so that problems
can be identified, and corrections made, before computing
resources are wasted. The workflow has been executed in
high performance computing infrastructures due to its complex
large-scale parallel computations. The number of nodes (or
cores) needed is determined from the size of the grid problem.
A simple workflow execution on Titan (OLCF) with four

7

...

Year 1-5

Year 6-10

Year 36-40

Climatologies

Climatologies

Climatologies
CADES

Fig. 7: Overview of the Accelerated Climate Modeling for
Energy (ACME) workflow.

different parameter values for a number of simulation time
units (5 years per stage), consumes over 50,000 CPU hours.

VI. CONCLUSION

In the past years, workflows have been used by several
science domains to efficiently manage their computations on
a number of different resources: from the scientist’s desktop
to complex, state-of-the-art systems. For instance, the envi-
ronmental science community has used workflows to create
earthquakes hazard maps, or to compute seismic noise cross-
correlations. In this paper, we have presented an introduction
to scientific workflows, emphasizing their main properties and
how scientists may model their experiments as workflows.
We described the Pegasus workflow management system,
highlighting three use-cases where the environmental scientists
have used Pegasus to advance their research methods.

Although workflows have been used by a small group of
environmental scientists, we believe that more researchers can
benefit from these technologies. The main goal of this paper is
to provide practical guidance on how scientists, in particular
environmental scientists, may benefit from the use of work-
flows. On the other hand, new workflow requirements such
as in-situ analysis and visualization or real-time data stream
analyses, also challenge the workflow research community to
provide efficient and advanced tools and resources [28].

ACKNOWLEDGEMENTS

This work was funded by DOE under the contract number
#DESC0012636, “Panorama–Predictive Modeling and Diag-
nostic Monitoring of Extreme Science Workflows”; and by
the National Science Foundation under the SI2–SSI program,
award number 1148515.

REFERENCES

[1] “USArray - Transportable Array,” http://www.usarray.org/researchers/
obs/transportable.

[2] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, 2015.

[3] R. Filgueira, A. Krause, M. Atkinson, I. Klampanos, and A. Moreno,
“dispel4py: A python framework for data-intensive scientific comput-
ing,” International Journal of High Performance Computing Applica-
tions (IJHPCA), 2016.

[4] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in Proceedings of the 1st ACM SIGMOD Workshop on Scalable Work-
flow Execution Engines and Technologies. ACM, 2012, p. 1.

[5] “Nextflow,” http://www.nextflow.io/index.html.
[6] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows for

e-Science: scientific workflows for grids. Springer Publishing Company,
Incorporated, 2014.

[7] R. Graves, T. H. Jordan, S. Callaghan, E. Deelman, E. Field, G. Juve,
C. Kesselman, P. Maechling, G. Mehta, K. Milner et al., “Cybershake: A
physics-based seismic hazard model for southern california,” Pure and
Applied Geophysics, vol. 168, no. 3-4, pp. 367–381, 2011.

[8] E. Deelman, C. Carothers, A. Mandal, B. Tierney, J. S. Vetter, I. Baldin,
C. Castillo, G. Juve, D. Krol, V. Lynch, B. Mayer, J. Meredith, T. Prof-
fen, P. Ruth, and R. Ferreira da Silva, “PANORAMA: An approach
to performance modeling and diagnosis of extreme scale workflows,”
International Journal of High Performance Computing Applications,
2015.

[9] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[10] E. M. Bahsi, E. Ceyhan, and T. Kosar, “Conditional workflow manage-
ment: A survey and analysis,” Scientific Programming, vol. 15, no. 4,
pp. 283–297, 2007.

[11] R. Filgueira, R. Ferreira da Silva, A. Krause, E. Deelman, and M. Atkin-
son, “Asterism: Pegasus and dispel4py hybrid workflows for data-
intensive science,” in The Seventh International Workshop on Data-
Intensive Computing in the Clouds (DataCloud), submitted, 2016.

[12] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P.
Barros, “Workflow patterns,” Distributed and parallel databases, vol. 14,
no. 1, pp. 5–51, 2003.

[13] “Common workflow language,” http://www.commonwl.org.
[14] “Pegasus documentation,” https://pegasus.isi.edu/documentation.
[15] “Open science grid,” https://www.opensciencegrid.org.
[16] “Chameleon cloud,” https://www.chameleoncloud.org.
[17] “Amazon elastic compute cloud,” http://aws.amazon.com/ec2.
[18] “Google cloud platform,” https://cloud.google.com.
[19] E. Deelman, K. Vahi, M. Rynge, G. Juve, R. Mayani, and R. Ferreira da

Silva, “Pegasus in the cloud: Science automation through workflow
technologies,” IEEE Internet Computing, vol. 20, no. 1, pp. 70–76, 2016.

[20] “XSEDE,” https://www.xsede.org.
[21] A. Rajasekar, R. Moore, C.-y. Hou, C. A. Lee, R. Marciano, A. de Torcy,

M. Wan, W. Schroeder, S.-Y. Chen, L. Gilbert et al., “iRODS primer:
integrated rule-oriented data system,” Synthesis Lectures on Information
Concepts, Retrieval, and Services, vol. 2, no. 1, pp. 1–143, 2010.

[22] L. Bauerdick, D. Benjamin, K. Bloom, B. Bockelman, D. Bradley,
S. Dasu, M. Ernst, R. Gardner, A. Hanushevsky, H. Ito et al., “Using
xrootd to federate regional storage,” in Journal of Physics: Conference
Series, vol. 396, no. 4. IOP Publishing, 2012, p. 042009.

[23] S. Callaghan, E. Deelman, D. Gunter, G. Juve, P. Maechling, C. Brooks,
K. Vahi, K. Milner, R. Graves, E. Field et al., “Scaling up workflow-
based applications,” Journal of Computer and System Sciences, vol. 76,
no. 6, pp. 428–446, 2010.

[24] “SCEC Cybershake: Using Pegasus to run across OLCF Titan, Bluewa-
ters and HPCC,” https://pegasus.isi.edu/2016/02/18/pegasus-scec-2015/.

[25] “IRIS: Incorporated research institutions for seismology,” https://www.
iris.edu.

[26] “Apache storm,” http://storm.apache.org.
[27] B. Mayer, P. Worley, R. Ferreira da Silva, and A. Gaddis, “Climate

science performance, data and productivity on Titan,” in Cray User
Group Conference, 2015.

[28] R. Ferreira da Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman,
“Community resources for enabling and evaluating research on scientific
workflows,” in 10th IEEE International Conference on e-Science, ser.
eScience’14, 2014, pp. 177–184.

http://www.usarray.org/researchers/obs/transportable
http://www.usarray.org/researchers/obs/transportable
http://www.nextflow.io/index.html
http://www.commonwl.org
https://pegasus.isi.edu/documentation
https://www.opensciencegrid.org
https://www.chameleoncloud.org
http://aws.amazon.com/ec2
https://cloud.google.com
https://www.xsede.org
https://pegasus.isi.edu/2016/02/18/pegasus-scec-2015/
https://www.iris.edu
https://www.iris.edu
http://storm.apache.org

	Introduction
	Related Work
	Scientific Workflows
	Workflow Composition
	Workflow Execution

	Pegasus Workflow Management System
	Overview of Pegasus Functionalities
	Creating Pegasus Workflows
	Executing Pegasus Workflows

	Use Cases: Environmental Computing Workflow Applications
	Cybershake
	Seismic Ambient Noise Cross-Correlation
	ACME

	Conclusion
	References

